19 ноября 2018 г. | Автор: Назгуль Адилбекова
Умножение по-китайски

Что приходит в голову многим из вас при выражении «зазубрить»? Наверняка большинство вспомнит таблицу умножения. Мы запоминаем её как стихотворение и каждый раз произносим про себя левую часть выражения, чтобы вспомнить правую. Но даже прекрасное знание этой таблицы не облегчает трудную для многих операцию умножения. А вот, например, в Японии и Китае ученики первого класса могут перемножать двухзначные и даже трёхзначные числа, не зная таблицу умножения.

Эта статья была опубликована в журнале OYLA №9. Оформить подписку на печатную и онлайн-версию можно здесь.

Как же они это делают? Возможно, это связано с тем, что японцы и китайцы используют иероглифы.

Один иероглиф может нести в себе смысл, который на нашем языке мог быть записан целым абзацем. И может быть поэтому восточным народам легче воспринимать мир через призму «картинок»-иероглифов, то есть визуально.

Приведём пример. Вы, читая эти строки, сначала видите отдельные буквы, далее складываете их в слова, а уж потом слова соединяете в предложения. Затем, читая предложения одно за другим, вы начинаете понимать смысл рассказа. У загадочных японцев и китайцев все совсем иначе. Иероглифы у них обозначают сразу какое-то слово, а порой и целую фразу. То есть, можно сказать, что они не читают рассказ, а видят его. Так же самое верно и для чисел.Попробуйте умножить, например, 54 на 96, используя японские иероглифы. Страшно представить, что у вас из этого получится. Ведь наверняка единственным способом, которым вы умете умножать, будет «в столбик».

Однако в Японии и Китае принято умножать иначе. Для оригинальных китайцев и японцев наш метод умножения в столбик очень неудобен и непривычен, как и наше чтение по буквам. Им опять нужна визуализация, проще говоря — картинка. Таким образом, японский и китайский способ умножения чисел также необычен, как и чтение. Давайте рассмотрим его.

Пример 1. Найти произведение чисел 21 и 32.

Для этого надо нарисовать эти числа при помощи горизонтальных и вертикальных прямых.

Шаг 1. Сначала рисуем первый множитель — 21. В нём 2 десятка и 1 единица, значит, рисуем горизонтально 2 параллельные прямые (сверху) и 1 прямую (снизу).

Шаг 2. Поверх первого множителя теперь рисуем второй множитель — 32. В нём 3 десятка и 2 единицы, значит, рисуем вертикально 3 параллельные прямые (слева) и 2 параллельные прямые (справа). Эти вертикальные прямые будут пересекать горизонтальные прямые первого множителя. Получился рисунок, похожий на всем известный знак «решётка».

Шаг 3. Далее смотрим на рисунок и считаем, сколько точек пересечения имеют горизонтальные и вертикальные прямые в каждом углу «решётки».

Шаг 4. Делим эти точки на три зоны (части).

Шаг 5. Ответ (т. е. произведение этих двух множителей) «собираем» по порядку, двигаясь от первой зоны ко второй, затем к третьей. При этом необходимо запомнить, что число из первой зоны соответствует единицам, число из второй зоны — десяткам, число из третьей зоны — сотням искомого произведения.

Ответ: произведение равно 672

Пример 2. Найти произведение чисел 34 и 25.

Шаги 1, 2, 3, 4 делаем как в предыдущем примере.

Шаг 5. Мы нарисовали горизонтальные и вертикальные прямые, посчитали все точки пересечения и разделили их на три зоны. Получились числа 20, 23 и 6 (соответственно 1, 2 и 3 зоны). А теперь обратите внимание, что два числа из них — 20 и 23 — двузначные.

В таких случаях число-произведение «собираем» немного по-другому. Нам нужно «превратить» двузначные числа в однозначные. Для этого используем принцип «оставить-отдать». Так, при подсчёте точек в первой зоне получилось число 20 (2 десятка и 0 единиц). Единицы (их у нас 0) оставляем, десятки (2) отдаём числу второй зоны. Во второй зоне получается 23 + 2=25. Здесь также, единицы оставляем (5), десятки (2) отдаём числу из третьей зоны. В третьей зоне получается 6+2=8. А дальше всё просто, как в предыдущем примере.

Ответ: произведение равно 850

Пример 3. Умножение трёхзначных чисел. Найти произведение чисел 132 на 234.

Все шаги делаем как в предыдущих двух примерах. Только «решётка» будет состоять не из одного, а из четырёх окон, зон с точками будет не 3, а 5.

Ответ: произведение равно 30888

Как вы смогли теперь убедиться, китайское или японское умножение помогает быстро и эффективно, без калькулятора, умножать двухзначные и трёхзначные числа друг на друга. Именно визуализация, то есть изображение всех точек пересечения прямых на одной плоскости, даёт нам зрительную помощь и подсказку, тогда как традиционный способ умножения столбиком подразумевает знание таблицы умножения и требует большого количества арифметических действий в уме.

Аналогичным способом можно умножать четырёхзначные и более «серьёзные» числа. В этом случае «решётка» будет выглядеть посолидней, при этом «рисовательный» способ умножения будет становиться чересчур громоздким и не таким эффективным.

Зато умножение столбиком, наоборот, будет становиться предпочтительным и очень даже скоростным, к тому же компактным и не позволит забыть общепринятую таблицу умножения.