ПОДПИСКА НА ВЕБ-САЙТ. ПРЕИМУЩЕСТВА:
Доступ к эксклюзивным статьям на сайте
Приглашение на образовательные лекции и мастер-классы
Возможность просматривать на всех мобильных устройствах и планшетах
Отличная цена: всего 200 тг в месяц!
Некоторые математические константы были известны издавна: числом Пи пользовались еще в Вавилонском царстве и Древнем Египте, «золотое сечение» же вывел итальянский математик Леонардо Фибоначчи в XIII веке. А число e появилось в 1690 году. Швейцарский математик Якоб Бернулли вычислил его, когда изучал разделы высшей математики — интегральное и дифференциальное исчисление.
Бернулли наткнулся на существование e, решая одну прикладную задачу.
Как мы видим, Бернулли задался вопросом: что если неограниченно увеличивать n в следующей формуле:
В высшей математике это называется «предельным переходом». Учёный определил, что при предельном переходе эта формула дает число: 2,718281828459045…, которое и получило название «число e».
Это число интересно тем, что повсеместно присутствует во многих разделах математики. Встретить его можно в тех областях, где математика «обслуживает» сложные физические процессы — например, затухающие колебания, ядерные реакции, радиоактивный распад и другое.
Другой пример. Представь себе, что ты биолог и у тебя в специальном стеклянном блюдце (оно называется чашка Петри) с питательным раствором размножаются бактерии. При этом известно, что каждую минуту количество бактерий увеличивается вдвое.
Допустим, деление началось всего с одной бактерии. Через минуту бактерий будет 2, ещё через минуту 4, потом 8 и так далее. Чтобы посчитать, сколько в чашке бактерий на любой заданный момент времени, нужно применить (в качестве расчётной формулы) так называемую показательную функцию, то есть 2x (два в степени x; 2 — потому что бактерии удваиваются), где x — это заданное время в минутах от начала процесса. В математике самая «знаменитая» показательная функция — e в степени x. У неё даже есть специальное название — экспонента.
Есть ещё в высшей математике понятие производная от функции. Наглядно — это скорость роста (или убывания) графика функции в каждой точке её графика. Так вот, экспонента замечательна тем, что производная от неё равна самой функции, то есть скорость роста графика экспоненты — это тоже экспонента. И это единственная функция, которая обладает таким свойством.
ПОДПИСКА НА ВЕБ-САЙТ. ПРЕИМУЩЕСТВА:
Доступ к эксклюзивным статьям на сайте
Приглашение на образовательные лекции и мастер-классы
Возможность просматривать на всех мобильных устройствах и планшетах
Отличная цена: всего 200 тг в месяц!
ПОДПИСКА НА ПЕЧАТНОЕ ИЗДАНИЕ. ПРЕИМУЩЕСТВА:
Самое интересное в научных дисциплинах и технологиях простым языком
Высокое качество печати
Выходит 12 раз в год
Бесплатная доставка до двери по всему Казахстану
Доступ к архиву и новым номерам